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The effect of large mass injection on the following three-dimensional laminar 
compressible boundary-layer flows is investigated by employing the method 
of matched asymptotic expansions: (i) swirling flow in a laminar compressible 
boundary layer over an axisymmetric surface with variable cross-section and 
(ii) laminar compressible boundary-layer flow over a yawed infinite wing in a 
hypersonic flow. The resulting equations are solved numerically by combining 
the finite-difference technique with quasi-linearization. An increase in the swirl 
parameter, the yaw angle or the wall temperature is found to be capable of 
bringing the viscous layer nearer the surface and reducing the effects of massive 
blowing. 

1. Introduction 
An interesting aspect of the study of flows with mass addition is the pheno- 

menon of boundary-layer blow-off. When large amounts of fluid are injected 
into a boundary layer, the injected fluid simply fills the region near the wall 
and causes significant alterations in the profiles of the flow variables. So, for large 
rates of injection, the boundary layer is characterized by (i) an inner layer close 
to  the surface where the viscous forces are negligible compared with the pres- 
sure and inertia forces and (ii) a relatively thin outer viscous layer in which 
transition from the inner to the inviscid external flow takes place. 

Owing to the presence of extremely small gradients and the largeness of the 
field of integration, the usual methods for handling two-point boundary con- 
ditions completely break down when the blowing parameter is very large. This 
failure can be attributed to the poor convergence and the instabilities of the 
numerical methods used. Since the prediction of the effects of massive blowing 
on slender aerodynamic bodies is of technological interest, it is desirable to carry 
out at  least an approximate analysis of the structure of the boundary layer under 
conditions of strong blowing. In  fact, several studies of boundary layers with 
large injection have been carried out. 

Pretsch (1944), Watson (1966), Aroesty & Cole (1965) and Kubota & Fer- 
nandez (1968) have developed solutions to the Falkner-Skan equation or its 
compressible analogue for large rates of blowing. Kassoy (1971) has rederived 

lore. 
t Present address : Aerodynamics Division, National Aeronautical Laboratory, Banga- 
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t,he problem considered by Kubota & Fernandez (1968) directly from the original 
equations for the hard-blowing case. Nachtsheim & Green (1971) and Liu & 
Nachtsheim (1973) have proposed a purely numerical method through a conver- 
sion of the two-point boundary-value problem into a three-point boundary-value 
problem. The incompressible boundary-layer flow at a t,hree-dimensional stagna- 
tion point with strong blowing has been investigated by Walton (1973) by the 
method of matched asymptotic expansions. The methods of Kassoy (1971)) 
Nachtsheim & Green (1971) and Liu & Nachtsheim (1973) involve t,hree-point 
boundary-value problems which can be solved only by an inverse method. On 
the other hand, in the method due to Kubota & Fernandez (1968), one faces 
only a two-point boundary-value problem, which can be solved directly. 

So the method due to Kubota & Fernandez ( 1  968) has been employed here 
to study the effect of large injection on (i) swirling flow in a laminar compres- 
sible boundary layer over an axisyrnmetric surface with variable cross-section 
and (ii) laminar compressible boundary-layer flow over a yawed infinite wing in a 
hypersonic flow. The method consists of constructing a uniformly valid approxi- 
mate solution for the hard-blowing case by using the modified von Mises trans- 
formation and the method of matched asymptotic expansions. Since the usual 
shooting procedures become unstable for the strong-blowing case, the equations 
are solved numerically by combining the finite-difference technique with quasi- 
linearization (Kubota & Fernandez 1968). 

2. Swirling flow in a laminar compressible boundary layer over an 
axisymmetric surface with variable cross-section 

2.1. Analysis 

The similarity equations governing the low-speed swirling laminar compressible 
boundary-layer flow of a perfect gas with density p, constant specific heat cp ,  
viscosity p proportional to the temperature T and Prandtl number unity caused 
by the superposition of a free vortex on the longitudinal flow over an axisym- 
metric surface of radius r with large injection a t  the surface are (Back 1969; 
Vimala 1974) 

f”’ + ff” +p[G(l- gw) + g w - f ’ 2 ]  + E[G(l - 9,) +gw- Gz] = 0, (2.1 a )  

G“+fG’ = 0, (2. lb)  
with the boundary conditions 

f(0) = f W ( <  - I) ,  f’(0) = G(0) = 0, f’(a) = G(W) = 1. (B.1c) 

Here f is a dimensionless stream function defined in such a way that f’ = u/u,, 
where u and u, are the longitudinal velocity components in the 6 direction inside 
and outside the boundary layer respectively. G stands for both:the normalized 
swirl velocity component and the enthalpy difference ratio and is given by 

G = w/ve = (g-gw)/(l-gw), 

where v is the swirl velocity in the 7 direction, 

(2.2a) 

g = H/He, H = c , T + & ( u ~ + w ~ )  (2.2b) 
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and the suffixes w and e denote values at  the wall and the edge of the boundary 
layer respectively. Z, p,  gw and f, are the swirl, longitudinal acceleration, wall 
temperature and mass-transfer parameter respectively and are given by 

He 

where 

X = pepeuer2d& h = c p T  J: 

(2 .2c )  

( 2 . 2 4  

(2 .2e)  

and w is the velocity component normal to the surface, in the <direction. Primes 
denote differentiation with respect to the independent similarity variable 2 
defined a5 

The solutions of (2 .1 )  for the cases of zero and moderate mass transfer have 
already been obtained by Back (1969) and Vimala (1974) respectively. Defining a 
new dependent variable 

and changing the independent variable from 2 to f, (2 .1)  are transformed into 

W ,f'2 (2 .3 )  

a2w d w  

d f 2  df 
W4 - + f - + 2P [G(1 -gw)  +gw - W ]  + 2Zi[G( 1 -gw) +gw- G2] = 0, ( 2 . 4 ~ )  

$( w+$) + f dG df = 0, 
(2 .4b)  

with the boundary conditions 

W(fw) = G(fw) = 0, W(W) = G(co) = 1. (2 .5)  

In  order to consider the large-injection case - f w  B 1 ,  when the occurrence of 
blow-off phenomena is possible, it  is convenient to divide the boundary layer 
into an inner and an outer region. 

For the inner region, near the wall, introducing a new independent variable 

f = f/( - f w )  = €*f 
transforms (2 .4)  into 

with the boundary conditions 

(2 .7b)  
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For large negative values off,, i.e. for - f, 3- 1, 
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E = (-f W )-2 < 1. 

w = T q ( f ) + E T q ( f ) +  ..., 
So, on expanding W and G in terms of e as 

G = B o ( f ) + ~ B l ( f ) +  ... 
(2.1 0 a) 

(2. l o b )  

and inserting these into (2.7), there results a power series in E which must vanish 
identically for all B.  Assuming E and p to be of order unity, we get the following 
sets of second-order differential equations at  zeroth and first order in B :  

I (2.11a) 
fd%/df+2P[GOP -gw)+gw-%l 

+ 2E[Go( 1 - 9,) + gw - a3 = 0 

J’dG,/df= 0 

%(-1)  = Go(-l)  = 0 

at zeroth order, 
(2.11b) 
(2.11 c) 

+ 2E[Bl( 1 - 9,) - 28,G1] = 0 I -1d2V0 -dTq w,z -2 +f- + 2$[S1( 1 - 9,) - Tq] 
df df 

-$[Rt-@] d - dG, +f$ -dB = 0 

(2.1 2 a) 

Since the equations (2.11) and (2.12) resulting from an expansion near the wall 
as E + 0 are of order two, while the original equations (2.7) are of order three, the 
boundary conditions asf+ 00 have been abandoned. 

An examination of the energy equations and the boundary conditions for 
Go, 8,, etc., gives immediately (Kubota & Fernandez 1968) 

Go = Gl = ... = 0. (2.13) 

Therefore the enthalpy difference ratio and the swirl velocity are zero in the inner 
layer. It may be noted that the same results are obtained by using the method 
analogous to that given by Walton (1973).p 

% = (S,/B) ( E  +PI [I-  ( - P I ,  

- - 

The solutions for vo and are 

(2.14a) 

Although the integral in the expression for vl can be represented in terms of a 
hypergeometric function, in general little insight is gained by doing so. On the 
other hand, it is important to note that asf+ 0 - the behaviour of TI is given by 
(Watson 1966) 

- w, N - [gW(n+p)]qP)-q2P- 1) (-f)”-“l +O(E( 4 1 ,  ( 2 . 1 5 ~ )  

t The authors are grateful to a referee for suggesting this method. 
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where 

(2.15b) 

Equations (2.14) and (2.15) indicate that the inner solution cannot be con- 
tinued pastf = 0 as it fails to satisfy the asymptotic boundary conditions. This 
discontinuity in W is smoothed by viscosity in a thin layer around f = 0. So, 
for the purpose of matching the inner solution to the outer uniform flow, a tran- 
sitional expansion is necessary. In  this transitional viscous region, where viscous 
terms and inviscid terms are of the same order, it is appropriate to use the physi- 
cal variable f itselfin the expansion. The behaviourof theinner solution asf+ 0 - 
suggests an expansion of the form 

w = w,( f) + E l F q J c )  + ..., (2.16 a) 

G = Go(f) + d-Gl(f) + . . . . (2.16b) 

Here it may be noted that the next term in the above expansion is proportional 
to c28 only if p < 1. For p = 1 and > 1, i t  is proportional to e2 log E and e2 respec- 
tively (Watson 1966). However, we have not included higher terms in the 
expansion beyond €8 as their contributions are considered to be small (Kubota 
&, Fernandez 1968). It has been found that the results thus obtained (i.e. by 
neglecting higher terms beyond €3) are in good agreement with exact numerical 
results (see figure 1). 

1 ( -f)2a if p < i ,  
E(-f) = (-J)Zlog(-f) if j3 = I, l(-n. if p > i .  

Substitution of (2.16) in (2.4) yields the following pairs of equations for 

(w,,G,) and (W,,G1): 

I (2.17b) 

J (2.18b) 

The boundary conditions for (2.17) and (2.18) are to be chosen such that the 
transition solution matches the outer (uniform flow) solution and the inner 
(inviscid) solution to some prescribed order in E .  In  the outer region, where 
f -+ + 00, i t  is required that W = G = 1, which can be satisfied only if 

(2.19) 

Another set of boundary conditions may be obtained by using the requirement 
that an overlap domain exists where the solution to (2.17) and (2.18) matches 

W,(CO) = G,(o~) = 1, @(a) = G,(o~) = 0. 
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the inner solution. To determine these boundary conditions, let an intermediate 
variable f* = f/u(e) be introduced. Where U(E) + 0 and u ( e ) / d  -+ 00 as E -+ 0 
withf* fixed, the limits of the inner and transition solutions match. This limit 
implies that f = uf * -+ 0 - and f = vf */d --f - 00 as 8 -+ 0 for negative f *. 

Withthe help of (2.14)rtnd(2.15), theinnersolutionnearf= 0- canbewritten 
in terms off* as 

lqn(f ;€)  - y ( E + P ) [ l -  u2J( -f*)2j] 

- q * - ” B - q 2 p -  l ) [ (E?+p)q , ]q-Uf*)”[ l+O(E(-  uf*))], (2 .204  
U2 

where E( - uf*) is defined by (2.15b), and 

Gin(!;€) N 0. (2.20 b) 

On the other hand, the transition solution can be expressed as 

Fr N w,( vf*/d) + dW,(  vf*/d) + . . . , (2 .214  

G,, - Go( u ~ * / E * )  + d G l (  vf*/d) + . . . , (2.21 b)  
so that 

Tqr-qn = W,(vf*/d)- (q,/P) ( E + P ) +  u~~[(s~/u)~~w,(uf*/s)) 
+ (g,/f?) @+P) (-f*)281+0(+2), (2 .224  

G,, - Gin = Go( vf*/&) + dG,( ~f*/d) + . . . . (2.22b) 

Hence, for matching to be successful, the conditions to be imposed on W,, Go, 
W, and GI asf-f -00 are 

( 2 . 2 3 ~ )  

(2.233) 

Once the transition solution is available, the composite solution can be con- 
structed by adding the two solutions and subtracting the common part, which 
happens to be the inner solution in this case. Therefore 

w,( - a) = (s,/P) ( E  +B),  Go( -a) = 0, 

w,( - 00) = ( - q,/P) ( E  +PI ( -f)@, GI( - 03) = 0. 

Wf;f,) = w,(f) + ( -f,)-”8W,(f)t ( 2 . 2 4 ~ )  

G(f;f,) = Go(f) + ( -f,)-”Gdlcf) (2.24 b )  

is a uniformly valid solution. In  (2.24), W,, W,, Go and G, may be obtained by solv- 
ing (2.17) and (2.18) with the boundary conditions (2.19) and (2.23). It might 
also be noted that, in (2.24), Wo represents the velocity in the viscous mixing 
layer while W, represents the rounding off of corners in the velocity profile. 
One more point worth noting is that W,, W,, Go and G, are independent off,, 
the blowing parameter, which enters only as a multiplicative factor in the final 
solution (2.24). Equations (2.17) and (2.18) do not possess any singularities and 
may be integrated numerically with the help of a stable numerical scheme which 
is essentially a combination of the quasi-linearization technique and the finite- 
difference technique (Kubota & Fernandez 1968; Vimala 1974). 



Three-dimensional laminar mpressible boundary layers 717 

f 
FIGURE 1. Comparison of the asymptotic solution with exact results (circles): velocity 

and enthalpy profiles (axisymmetric surface). h = 10.0, p = 1.0, fw = - 2.0, gw = 1.0. 

The physical distance Z across the boundary layer is given by 

f f w + A f  
2 = s, w-hif = IfW W - * d f + j f  W-ldf. 

f w + A f  
(2.25) 

The second integral can be evaluated numerically without any difficulty whereas 
a straightforward numerical integration of the first integral is very difficult, since 
W + 0 as f -+ f w .  However, the first integral can be calculatedanalytically with 
the help of the inner solution To, which is valid for small values of Af. Using (2.14), 
we obtain 

Hence 

(2.26) 

(2.27) 

Next, the wall-shear-stress and the heat-transfer parameters f; and GL are 

( 2 . 2 8 ~ )  

(2.288) 

on using (2.11) and (2.12). It can be concluded from (2.28) that, at  least €or the 
case of a Prandtl number of unity and ,u cc T, for finite Z and the heat trans- 
fer and t.he tangential shear stress at  the wall vanish whereas the longitudinal 

given by 
f ;  = &(dW/df)w = s w ( ~ + P ) / - f w + W ) ,  

GL = (f’dG/df), = 0 to all orders in E 
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FIGURE 2. Velocity and enthalpy profiles for the case of large injection (axisymmetric 
surface). E = 0 or 10.0, = 1.0. (a ) fw  = -2.0 or -4.0, gw = 1.0. ( b ) f w  = -2.0, gw = 0.2 
or 1.0. 

shear-stress component is still finite. Evidently, the mass leaving the wall 
convects away the heat generated at the wall by viscous dissipation. 

2.2. Results 

Figure 1 demonstrates the validity of this asymptotic analysis for large values 
of fw by comparing the asymptotic solutions with the exact solutions obtained 
from a straightforward numerical integration of (2.1) with the boundary con- 
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FIGURE 3. Effect of swirl and wall temperature on the location of the dividing 
streamline (f = 0) (axisymmetric surface). p = l . 0 , j w  = -2 .0 .  

ditions ( 2 . 2 )  by the method of quasi-linearization (Vimala 1974) for the case 
a = iO.0, p = 1.0, f,,, = - 2.0. It can be seen that there is only a slight departure 
of the values obtained by this asymptotic analysis from the exact values. 

In figures 2 (a) and (b ) ,  the effects of the wall temperature 9, and the injection 
parameter f ,  on the velocity and enthalpy profiles corresponding to ?i = 0 or 
10.0 and B = 1.0 are presented. The variation of the location of the dividing 
streamline ( f  = 0) given by Z* = ZI,,,  and the variation of the corresponding 
velocity and enthalpy valuesf'* and G" with g, for E = 0 or 10 and j3 = 1 are 
shown in figures 3 and 4 respectively. It is clear from these figures that the divid- 
ing streamline is further away from the wall for ?i = 0 than for Z = 10.0. It can 
also be observed that the shifting of the dividing streamline away from the 
boundary becomes less and less as g, increases. Further, an increase in gw and 

produces an increase in f '* but a decrease in G*, the effect on f'* being more 
pronounced than that on G*. 
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FIGURE 4. Effect of swirl and wall temperature on the dividing-streamline 
velocity and enthalpy (axisymmetric surface). = 1.0, f w  = - 2.0. 

3. Laminar compressible boundary-layer flow over a yawed infinite 
wing in a hypersonic flow 

3.1. Analysis 

The similarity equations governing the development of a laminar compressible 
boundary layer over a yawed infinite wing in a hypersonic flow of a perfect gas 
with density p,  Prandtl number unity, viscosity /u proportional1to the tempera- 
ture T, kinematic viscosity v and specific heat cp with large injection at  the surface 
are the following (Reshotko & Beckwith 1957; Whalen 1959; Vimala 1974): 

f"+ff" = , 8 p -  1 +tan2A(G2- 1)+sec2A(a- 1) (G- l)], ( 3 . 1 ~ )  

G"+fG' = 0, (3.1 b )  
with boundary conditions 

f(0) =f, (< - l), f'(0) = G(0) = 0, ~ ' ( c o )  = G(co) = 1. (3 .1~)  

In  the above equations, f is a dimensionless stream function defined such that 
f' = u/ue, where u and ue are chordwise velocity components (in the x direction) 
inside and outside the boundary layer respectively. G represents both the nor- 
malized spanwise velocity component and the enthalpy difference ratio and is 
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given by 

where 
G = V/v, = ( H  - Hw)/(He - Hw), 

H = c,T+*(u2+v2), 

( 3 . 2 ~ )  

(3 .2b )  

v is the spanwise velocity component (in the y direction) and the suffixes w and e 
refer to values a t  the wall and the edge of the boundary layer respectively. 
A is the yaw angle; a, p and f, are respectively the wall temperature, pressure- 
gradient and mass-transfer parameters and are given by 

a = Tw/To, p = (Y - 1)/Y, ( 3 . 2 ~ )  

y- lu:aue -4 
f w =  -ww[$(l+ ---)I 2 a,” ax ’ ( 3 . 2 d )  

where w is the normal velocity component (along the x axis), a the sonic velocity, 
y the ratio of specific heats and the subscript zero refers to a free-stream stagna- 
tion value. Further, primes denote differentiation with respect to the independent 
similarity variable 7 given by 

(3 .2e )  

where 

The nonlinear two-point boundary-value problems posed by 3.1) for the cases 
of zero and moderate mass transfer have been solved by Whalen (1959)  and 
Vimala (1974) respectively. Here, for the purpose of considering the large- 
injection case, letting W =f ’2  as in $ 2  transforms (3 .1 )  into 

d2W dW 
W4 - + f - = 2p[ W - 1 + tan2 A( G2 - 1) + sec2A(a - 1 )  (G - 1 )], ( 3 . 3  a )  

(3 .3b)  

d f2  df 

W(fw) = G(fw)  = 0,  W(OO) = G(W) = 1 .  (3.3c) 

For large injection rates, i.e. f,,, < - 1,  it will be convenient to divide the 
boundary layer into an inner and an outer region. The wall-layer solutions are 
governed by the equations 

d2W -dW 
E W* 7 +f- = 2p[ (  W - 1 )  + tan2A (G2 - 1 ) + sec2 A(a - 1 )  (G - l)], (3.4~) 

d f 2  df 

(3 .4b )  

with the boundary conditions 

W ( - 1 )  = G(-1) = 0, W(OO) = G(oo) = 1 ,  ( 3 .5 )  

J =  f/-fw = df. ( 3 4  
where 

46 F L  M 71 
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Since - f, 9 I,  so that e = ( -fw)-2 < 1 ,  Wand G can beexpanded in terms of e 
as 

w = vo(f)+sq(f)+ ..., (3.7a) 

G = B o ( f ) + ~ B 1 ( f ) +  ..., (3.7b) 

where (W,, Go) and (Wl, GI) satisfy the following zeroth-order and first-order 
equations : 

- -  - -  

fdwo/df= 2 P [ ~ o - l + t ~ a n 2 A ( G ~ -  1 )  \ 
(3.8 a,) I (3 .8b )  

a t  zeroth order; 
+sec2A(a- 1 )  (ao- l)] 

f d G o / d f =  0 

I ( 3 . 8 ~ )  
- 
W 0 ( - 1 ) = G , ( - 1 ) = O  

I - d2wo -dwl W8 --+ f C; = 2 p [ q +  2 tan2A Bo8,+sec2A(a- 1) ((?,)I 
df2 df 

(3.9a) 

2ij””t$] d - d a  +f-$ -da = 0 

- 
Hi,( - 1) = a,( - 1) = 0 

at O ( 4 -  (3.9b) 

(3.9c) i 
The solutions to these sets of equations are (see Kubota & Fernandez 1968) 

- - 
Go = GI = 0, 

Vo = asec2A[l - ( -f)28], 

( 3 . 1 0 ~ )  

(3.10b) 

-q 1 - tW)t 
= (asec2R)t Zp(2p- 1) (-f)zB/ ~ dt 

1 t3  

N -(asec2A)*p(2p- 1)(-f)28-z[1+O(E( -f))] (forf-+O-), ( 3 . 1 0 ~ )  

where E( -f) is given by (2.15b). It should be mentioned that, as in the problem 
in 92, the method analogous to that given by Walton (1973) also gives the result 
(3.10 a).  

The wall-shear-stress and heat-transfer parameters f: and GL are deter- 
mined by the above inner-layer solutions and are given by 

fi = +(dW/df), = apsec2A/-fw+O(~2), ( 3 . 1 1 ~ )  

GL = (f’dG/df), = 0. (3.1 1 b)  

It is obvious from (3.11) that the wall-shear-stress component in the chordwise 
direction remains finite while the spanwise wall shear stress and the heat transfer 
a t  the surface are zero for large injection rates. 

By developing an outer viscous-layer solution for the purpose of matching 
the inner solutions with the external inviscid solution through a procedure 
similar to that employed in 3 2, the uniformly valid solution 

W = K(f) + ( -fw)-28 w,(f), G = + ( -fw)F28 G,(f) (3.12) 

can be obtained for large injection rates. W,, W,, Go and G, are the solutions of 
the following sets of differential equations, which are numerically integrable 
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3 
FIGURE 5. Comparison of the asymptotic solution with exact results (circles) : velocity and 

enthalpy profiles (yawed infinite wing). a = 1.0, B = 0.2857, A = 7 5 O ,  fW = -2.0. 

by combining quasi-linearization and finite-difference techniques (Kubota & 
Fernandez 1968; Vimala 1974): 

(3 .13~)  I d2W0 d W o -  W* - + f - - 2p[(W0 - 1) + tan2A(Gt - 1) 
O d f 2  df 

+sec2A(a- l ) (Go- l)] 

a t  zero order; 
(3.13b) 

wo(.O) = G,(~o) = 1, W0(-.o) = asec2A, Go(-oo) = 0) ( 3.13 c) 

I 
= 2i[W, + 2 tan2A GoGl + sec2A (a  - 1) G,] 1 ( 3 . 1 4 ~ )  

(3 .14~)  

Inversion of the transformation W = f 2  yields the independent similarity 
variable 7 as 

f 
q = f:. W-tdf = [ -%Af]'co~A +Jfw+, w-4 df, (3.15) 

where Af < 1. 

46-2 
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FIGURE 6 .  Velocity arid enthalpy profiles for t,he case of large injection (yawed infinite 
wing). __ , A = 30"; -- , A = 0,  /? = 0.2857. (a )  a = 1.0, f iL,  = -2.0 or -4.0. ( b )  
a = 0.2 or 1.0, f iO = - 2.0. 

I I I 1 
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FIGURE 7. Effect of yaw and wall temperature on the location of the dividing 
streamline (f = 0) (yawed infinite wing). /3 = 0.2S57,ftc = -2-0.  
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FIGURE 8. Effect of yaw and wall temperature on the dividing-streamline velocity in the 
chordwise direction (yawed infinite wing). p = 0.2857, fw = - 2.0. 

3.2. Results 

The asymptotic solutions resulting from (3.12) for the case /I = 0.2857, a = 1-0, 
A = 75", fw = - 2.0 have been compared with those obtained by quasi-linearizs- 
tion in figure 5. The departure of the approximate asymptotic solutions from the 
exact results is not appreciable, which proves that the present analysis holds 
good when fw assumes larger and larger negative values. The influence of large 
injection on the velocity and enthalpy profiles is shown in figures 6 ( a )  and (b ) .  
The variation of the location of the dividing streamline f = 0 and the correspond- 
ing velocity and enthalpy values a t  f = 0,  namely r*, f'* and G*, with a and A 
at large blowing rates is presented in figures 7-9. 

It is found that q* and G* decrease as a and A increase whereas f'* increases 
with A and a. So the boundary-layer blow-off phenomenon is observed more for 
small values of A and a. An increase in A or a or both is capable of bringing the 
dividing streamline nearer the boundary, a t  the same time increasing the 
chordwise velocity but decreasing the spanwise velocity and enthalpy at  f = 0. 
However, the influence of a and A onG*is lesspronounced than that on T* or f'*. 
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FICIJRE 9. Effect of yaw and wall temperature on the dividing-streamline entlialpy and 
the dividing-streamline velocity in the spanwise direction (yawed infinite wing). p = 0.2857, 
f,= - 2.0. 

4. Concluding remarks 
It has been found that large rates of injection produce an increase in the velo- 

city overshoot and blow the viscous layer away from the wall. In  flows with swirl, 
the longitudinal wall-shear-stress parameter remains finite and is directly propor- 
tional to the sum of the swirl and the longitudinal pressure-gradient parameter 
and also to the wall temperature but inversely proportional to the injection para- 
meter. On the other hand, both the tangential shear-stress parameter and the 
heat-transfer parameter vanish a t  the wall owing to viscous dissipation. An 
increase in the swirl parameter or the wall temperature or both is capable of bring- 
ing the viscous layer nearer the wall and a t  the same time increasing the longi- 
tudinal velocity component and decreasing the swirl velocity as well as the total 
enthalpy a t  the dividing streamline. 

I n  the case of flow over yawed wings, similar behaviour is observed at  large 
blowing rates. Even though the spanwise wall-shear-stress component and the 
heat transfer a t  the surface reduce to zero, the chordwise wall-shear-stress com- 
ponent is finite. In  fact i t  is directly proportional to the wall temperature, the 
pressure gradient and the square of the secant of the yaw angle but inversely 
proportional to the injection parameter. Furthermore, it was found that the 
viscous layer can be shifted towards the wall and that the effect of an incipient 
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blow-off phenomenon is reduced by increasing either the yaw angle or the wall 
temperature or both. 
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